1. Introduction

Production of small ruminants is an important industry in Malaysia as the demand increased year after year. Malaysia have to depend on the imports to meet the shortfall in domestic production. Increased in population growth accompanied by urbanisation and increasing in buying ability is likely to increase the demand for high quality animal proteins in Malaysia. Boer goat were first brought into Malaysia in 2001 by Malaysian Agricultural Research and Development Institute (MARDI) to provide alternative agricultural activity for the local farmers and entrepreneurs. Nowadays, most of farmers tend to rear Boer or crossed Boer due to their high quality traits which are fast growth rate, excellent body conformation, and good carcass quality compared to other breeds [1]. However, proper management in rearing goat is critical for diversification of income for the producers and production to the nation. One of the aspect that need to be emphasized in goat farming is growth pattern of kid, start from birth to wean. The birth weight of kids is highly variable, and is mostly under the influence of breed [2]. It is known that birth weight and the growth of kids are indicators of the breed efficiency in the production of meat. It is known that birth weight and the growth of kids are mostly under the influence of breed [2][5], then litter size [6], sex of kids [7], parity [8] and reproduction status of the dam [9]. Nevertheless, the information regarding growth pattern of crossed Boer kid rear in Malaysia is limited. As its depend on management aspect and record keeping of individual farm. Therefore, this study was aimed to measure the influence of some factors that involved in growth performance of crossed Boer kids which are parity of the dam, sex and litter size of kids.

2. Materials and Methods

2.1. Experimental Animals

This research was conducted for five months from July to November 2014 in Projek Ternakan Kambing Komersial (PTKK) Kubang Menerong farm, under PERDA Ventures Incorporated Sdn Bhd. located at Tasek Gelugor, Pulau Pinang. PERDA Ventures Incorporated Sdn Bhd. (PVI) is a wholly owned subsidiary of Penang Regional Development Authority (Government) established in 2007. The rearing system conducted by PTKK Kubang Menerong is intensive farming whereby the goats in that farm are confined 24 hours in raised goat shed of slatted floors that allows for ventilation. The goats are fed with fodder, the Napier grass (Pennisetum purperum), Apart from Napier grass, Ipil-ipil (Leucaena leucocephala)

Abstract

This study was aimed to measure influence of some factors that involved in growth performance of crossed Boer kids including parity of mother, sex and litter size of kids. The data gained on body weight at birth weight (BW), 1 (Wt. 1), 2 (Wt. 2), and 3 (Wt. 3) months of age of 20 crossed Boer kids were recorded. There were two kids from does with parity 1, three kids from does with parity 2, eleven kids from does with parity 3, and four kids from parity ≥4. From all kids, eleven of them are male and nine female. Kids Six kids were born as single whereas eight kids were born as twin and six kids were born as triplet. Results showed that there was a no significant different (P>0.05) associated with parity of mother. For sex of kids, results show that highly significant differences (P<0.01) for body weight were identified at age one, two and three months. On the other hand, there was no significant difference (P>0.05) for body weight of kids due to single, twin or triplet kid born effect.
and Guinea grass (Panicum maximum) are given as well. In addition, they are also fed with concentrate feed supplemented with mineral block and molasses block while water were given ad libitum.

2.2. Data Collection

Twelve Boer does, age ranged between one to three years with different parity, which have giving birth, are selected. The kids were numbered according to doe number. From these twelve does used, there were 20 kids produced consist of 11 males and 9 females. The parameters measured are the live weight of the Boer kids starting from the birth until it reaches 3 months old. The details of the newborn including parity of dam, date of birth, sex, litter size/birth type, and the body weight at different ages (birth weight, weight at 1, 2, and 3 months old) were recorded. Within 6 to 10 hours after birth, birth weights of the kids were recorded with accuracy of ±0.05 kg. After a month, body weights of the kids were recorded again for every month until they reach weaning weight about 3 months old. The growth pattern of Boer kids observed by referring to factors such parity of mother, type of birth, and also sexes of kids.

2.3. Statistical Analysis

All the result from the research were analysed by statistical software SPSS Analysis of Variance (ANOVA) except for sex of kids that used SPSS version 20 Independent T-Test to examine the data and records on body weight at different ages across the different levels in the study.

3. Results and Discussion

The Boer kids had greater total birth weights (5.2 ± 0.23 kg) compared to Kacang goat (3.1 ± 0.19 kg) [10]. The research conducted by Mioc et al. [11] identified the significant (P<0.01) influence of birth weight on the age and and body weight of kids at weaning, as well as on the average daily weight gain of kids until weaning. Kids with birth weight higher than 2.5 kg had a higher average daily weight gain until weaning and further were weaned earlier than kids of lower birth weight. Elieser et al. [10] claimed that total of birth and weaning weight of the kids was positively correlated with weight of birth and weaning.

In the present study, there was no significant different (P>0.05) of effects of parity number of the dam on value for birth weight, for weight at one, two and three months (table 1). However this result is in contrast with previous research that has been done, parity of dam significantly affects all the production performances [12]. As the maternal ability is improved with an increase of parity, especially in multiple birth species. The cotyledon number and placental weight will be increased with the increase of parity of dam in the Turkish Saanen goat, and high relationships exist with litter size weight [13]. The youngest dam had the lowest productive capability [10]. The increased production of dam from parity 1, 2, 3 and 4 due to the condition of the uterus were the better with increasing parity [6] this causes of the hormonal mechanisms at reproductive organs will grow perfectly and skill of dam was higher parenting [14][15]. However, at parity 5 and higher, reproductive performance of the dam was decreased because the parent has been older. Though, this research does not have a significant effect of parity on body weight of kids might be due to small sample size.

In term of the effects of the sex on body weight is significant different for weight during one, two and three months with P<0.05 respectively (table 2). This shows that the sex is highly contributed to weight of kids after their birth until reach weaning age. Besides, previous researches have similar findings, there was a significant influence of sex on the birth weight and growth of kids [7][16][17]. According to Kezic et al. [18], determined a significantly higher average daily weight gain in male kids in comparison to female Alpine and Crotian white kids. Mioc et al. [11] determined the significant influence of sex on average daily weight gain of kids in the period until weaning, and resulted on the age and weight of kids at weaning. However, this study found that there was no significant different for weight at birth (P=0.145) (table 2). In contrast, Rhone [19] discovered that male kids at birth weighed 3.37±0.04 kg, and were significantly heavier than female kids who averaged 3.14±0.04 kg. This case also happened in the previous study by [6][20][21][22] in which male kids were heavier than female kids whereby these are common observations in goats.

Table 1: Effects of the parity on body weight in kg (mean ± SE) at birth weight (BW), weight at 1 month (Wt.1), weight at 2 month (Wt.2), and weight at 3 month (Wt.3).

<table>
<thead>
<tr>
<th>Parity</th>
<th>n</th>
<th>BW</th>
<th>Wt. 1</th>
<th>Wt. 2</th>
<th>Wt.3</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>2.63±0.1499</td>
<td>9.00±0.4999</td>
<td>15.45±0.7545</td>
<td>22.00±0.9998</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td>2.70±0.0577</td>
<td>9.08±0.0882</td>
<td>15.63±0.2729</td>
<td>22.00±0.4041</td>
</tr>
<tr>
<td>3</td>
<td>11</td>
<td>2.52±0.0536</td>
<td>8.72±0.1016</td>
<td>15.00±0.2004</td>
<td>21.37±0.2867</td>
</tr>
<tr>
<td>≥4</td>
<td>4</td>
<td>2.55±0.1190</td>
<td>9.08±0.1377</td>
<td>15.93±0.1315</td>
<td>22.5±0.2121</td>
</tr>
<tr>
<td>Sig. value</td>
<td>0.458</td>
<td>0.230</td>
<td>0.096</td>
<td>0.197</td>
<td></td>
</tr>
</tbody>
</table>

Finally, the results of the effects of litter size on body weight shows that there was a significant different at birth and at age of one month (P<0.005) (table 3). Birth weight and live weight at all ages were significantly affected by type of birth or litter size [23]. Total weight of birth and weaning the kids would increase with the increase
of single birth and weaning weight. This means that kid who has been born with single has high birth weight compared to twin and triplet kids. Single kid wills has high birth weight due to condition where dam will give nutrient intake directly to kid during pregnancy. So the birth weight of single kid is high compared to twin and triplet kids because they don’t need to compete for nutrition during pregnancy.

Table 2: Effects of the sex on body weight in kg (mean ± SE) at birth weight (BW), weight at 1 month (Wt.1), weight at 2 month (Wt.2), and weight at 3 month (Wt.3).

<table>
<thead>
<tr>
<th>Sex of kid</th>
<th>n</th>
<th>BW</th>
<th>Wt. 1</th>
<th>Wt. 2</th>
<th>Wt. 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Male</td>
<td>11</td>
<td>2.62±0.062</td>
<td>9.12±0.086</td>
<td>15.89±0.091</td>
<td>22.54±0.101</td>
</tr>
<tr>
<td>Female</td>
<td>9</td>
<td>2.50±0.047</td>
<td>8.57±0.047</td>
<td>14.63±0.073</td>
<td>20.82±0.094</td>
</tr>
<tr>
<td>Sig. value</td>
<td></td>
<td>0.145</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
</tr>
</tbody>
</table>

Generally when litter size increases, the birth weight decreased. For lambs in utero, as the number of fetuses increases, the number of caruncles attached to each fetus decreases, thus reducing the feed supply to the fetus hence reduce the birth weight of the lambs [24]. On the other hand, there was no significant different at age of two and three months. However, the result gained is not in line with several studies conducted before. A research conducted by Zhang et al. [6] which involved Boer goat shown that there were significant effect of litter size in goat on birth weight and at weaning age which the values linearly declined with the increase of litter size.

Table 3: Effects of the litter size on body weight in kg (mean ± SE) at birth weight (BW), weight at 1 month (Wt.1), weight at 2 month (Wt.2), and weight at 3 month (Wt.3).

<table>
<thead>
<tr>
<th>Litter size effect</th>
<th>n</th>
<th>BW</th>
<th>Wt. 1</th>
<th>Wt. 2</th>
<th>Wt. 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Single</td>
<td>6</td>
<td>2.77±0.0742</td>
<td>9.18±0.1701</td>
<td>15.78±0.2868</td>
<td>22.32±0.3885</td>
</tr>
<tr>
<td>Twin</td>
<td>8</td>
<td>2.51±0.0441</td>
<td>8.76±0.1016</td>
<td>15.21±0.2271</td>
<td>21.46±0.3113</td>
</tr>
<tr>
<td>Triplet</td>
<td>6</td>
<td>2.43±0.0333</td>
<td>8.70±0.0774</td>
<td>15.02±0.2469</td>
<td>21.55±0.3658</td>
</tr>
<tr>
<td>Sig. value</td>
<td></td>
<td>0.001</td>
<td>0.028</td>
<td>0.132</td>
<td>0.221</td>
</tr>
</tbody>
</table>

4. **Conclusion**

The body weights of kids were not affected by parity effect, and litter size effect. Though, effect of sex of kids had influenced the body weights of kids. Regardless of how, there was slightly difference between single kids and triplet kids in term of body weight as single kids had highest body weight compare to triplet kids. Therefore, based on the results from the studies, we can conclude that nutrition become main factors on affecting body weights of kids. Thus, pre-weaning study is very important as it can provide information on management to post-weaning and growth of kids. However, larger sample number is required to increase the accuracy of the results.

Acknowledgement

This research was financially supported by Research Acculturation Grant Scheme (RAGS), Kementerian Pendidikan Malaysia (KPM) code: R/RAGS/A07.00/00130A/001/2015/000194.

References

